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Abstract

Numerical simulation of an air and water two-phase flow in a 20 lm ID tube is carried out. A focus is laid upon the flow and heat
transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to
solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the
mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gra-
dient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34–13 and 16–490, respectively, and the
capillary number is 0.0087–0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than
the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-
phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The com-
puted wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number
beneath the bubble is found notably higher than that of single-phase flow.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Multiphase flow in a micro conduit has become very
important in many emerging applications such as micro
heat exchangers and Lab-on-a-chip. In order to success-
fully design such devices, understanding of flow physics
in micro scale and their engineering modeling are crucial.

Gas–liquid two-phase flows in mini and micro conduits
often exhibit different behavior as compared to those in
macro-sized conduits. One reason for this difference is the
ratio of the gravitational effects to the surface tension,
which can be represented by the Eötvös number (or the
Bond number):
0142-727X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Eo ¼ gDqd2

r
; ð1Þ

where g, Dq, d and r denote the gravitational acceleration,
the density difference between two phases, the hydraulic
diameter of conduit, and the surface tension. For instance,
Brauner and Moalem-Maron (1992) propose a criterion,
Eo� (2p)2, for the surface tension to be dominant.

As reviewed, e.g., by Kandlikar (2002), Lee and Muda-
war (2005b), and Serizawa (2006), extensive experimental
studies have been reported on gas–liquid two-phase flow
and boiling heat transfer in mini and micro conduits. The
primary concerns lie in the pressure drop and heat transfer
characteristics under given flow conditions. However, there
still seem to exist considerable discrepancies between exper-
imental data, especially in heat transfer characteristics, lar-
gely due to the difficulty in experimental setup and
measurement.
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Nomenclature

A cross-sectional area of tube, A = pR2

C Chisholm parameter
Ca Capillary number, lLjL/r
Cp specific heat at constant pressure
d hydraulic diameter
Eo Eötvös number, Eq. (1)
fTP two-phase friction factor, Eq. (22)
F level set function
g gravitational acceleration
G total mass flux, qLjL + qGjG
h heat transfer coefficient
He smoothed Heaviside function, Eq. (7)
j superficial velocity
Lz longitudinal length of computational domain
~n unit normal vector
Nu Nusselt number, Eq. (36)
p pressure
P mean pressure
Q volumetric flow rate
R radius of tube
Rb radius of bubble
Re superficial Reynolds number, qkjk(2R)/lk (where

k = G, L)
t time
T local temperature
u local velocity
uc velocity magnitude of circulating flow
U mean velocity, Eqs. (29) and (30)
X Martinelli parameter, Eq. (19)
z longitudinal coordinate

Greek Symbols

a void fraction
b volumetric gas flow ratio, Eq. (14)

d Dirac delta function
de smoothed Dirac delta function, Eq. (8)
Dr radial grid spacing
Dz longitudinal grid spacing
Dq density difference
e dimensionless width of interface smoothing
/ any variable
U2

L two-phase multiplier, Eq. (18)
j interface curvature
k heat conductivity
l dynamic viscosity
q density
r surface tension coefficient
h dimensionless local temperature, Eq. (34)
H dimensionless mean temperature
W dimensionless stream function, Eq. (31)

Subscripts
a actual
G gas phase
GO gas-only
H homogeneous
L liquid phase
LO liquid-only
m bulk-mean
r radial
TP two-phase
u unknown
w wall
z longitudinal

Operator

h Æ i domain average
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Numerous visualization studies show that gas–liquid
flows in micro sized conduits do not have a high degree
of three-dimensionality. Therefore, their dynamics is
expected much simpler than those in macro-sized conduits.
By focusing on this reduced complexity, several attempts
have recently been made to develop simple mechanistic
models, rather than tuning the conventional models for
micro conduits, e.g., a surface tension-conscious two-phase
pressure drop model by Lee and Mudawar (2005a) and the
three-zone boiling heat transfer model by Thome et al.
(2004). Basically, these models largely rely on experimen-
tally accessible information (such as flow patterns), dimen-
sional analysis, and assumptions of velocity and
temperature profiles. These mechanistic models can be
much improved if we have more detailed knowledge inside
the flow. With the present measurement technique, infor-
mation inside a micro two-phase flow, such as the local
velocity and temperature, is difficult (or perhaps impossi-
ble) to obtain. In contrast, advanced numerical simulation
has a possibility to offer those quantities.

Our final goal is to perform systematic simulation of
boiling heat transfer in micro conduit in order to obtain
comprehensive understanding of two-phase flow physics
and heat transport mechanisms in micro conduits. As
the first step, we numerically investigate the essential
mechanisms of isothermal bubble-train flow and convec-
tive heat transfer without phase change. The global prop-
erties obtained in the simulation are compared with
available experimental data and empirical correlations.
The underlying mechanisms are discussed based on the
computed flow characteristics. Similar attempts have been
made recently by Ghidersa et al. (2004), who simulated
heat transfer in bubble-train flow in a three-dimensional
square mini-channel. In the present study, we deal with
two-dimensional axisymmetric bubble-train flows. Accord-
ingly, analysis of flow and heat transfer characteristics is
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much simplified, while retaining the essential physical
features.

2. Simulation methods

2.1. Governing equations

We consider a gas–liquid two-phase flow in a cylindrical
pipe. Each phase is treated as incompressible. The gas and
liquid are immiscible and phase change does not take place.
Under these assumptions, the fluid velocity field,~u, is given
by the continuity equation:

r �~u ¼ 0; ð2Þ

and the momentum equation,

oðq~uÞ
ot
þ~u � rðq~uÞ ¼ �rp þr � l r~uþ ðr~uÞt

� �� �
� rjd~n;

ð3Þ
where q and l denote the density and the dynamic viscos-
ity, respectively. The last term of Eq. (3) represents the
surface tension force, with j, d, and ~n denoting the curva-
ture (viewed from the gas phase), the Dirac delta function,
and the unit normal vector of the interface (outward from
the gas to liquid phases), respectively. The gravitational
force term is omitted because Eo is estimated to be on
the order of 10�4 under the conditions assumed in the pres-
ent study.

We also consider convective heat transfer. By assuming
small temperature difference, the temperature is treated as a
passive scalar. Thus, the governing equation for tempera-
ture, T, reads

oðqCpT Þ
ot

þ~u � rðqCpT Þ ¼ r � ðkrT Þ; ð4Þ

where Cp and k are the specific heat at constant pressure
and the heat conductivity, respectively.

Note that Eqs. (2)–(4) are satisfied in both gas and liquid
phases.

2.2. Interface capturing method

In order to accurately capture the gas–liquid interface,
we adopt the level set method (Sussman et al., 1994). The
interface is captured implicitly as the zero level set of a
smooth function, which is denoted as F; the gas–liquid
interface is identified as F = 0. The level set function is neg-
ative in the gas (F < 0) and positive in the liquid (F > 0).
The function of F follows the advection equation:

oF
ot
þ~u � rF ¼ 0: ð5Þ

The physical properties of the fluid are calculated by inter-
polating those of the gas and liquid phases, according to

/ ¼ 1

2
þ H e

� �
/L þ

1

2
� H e

� �
/G: ð6Þ
Here, / denotes any physical property (q, l, Cp, and k)
with its subscripts, L and G, representing the liquid and
gas, respectively. The interpolation function H� is a
smoothed Heaviside function defined as

H eðF Þ ¼
� 1

2
for F 6 �e

1
2

F
e

� �
þ 1

p sin pF
e

� �� �
�e < F < �

1
2

F P e;

8><
>: ð7Þ

where e is the width of interface smoothing. In the present
simulation, e is set equal to the length of three computa-
tional grid cells.

The surface tension term in Eq. (3) is computed by using
the continuum surface force model (Brackbill et al., 1992).
The Dirac delta function in the surface tension term is
replaced by a smoothed Dirac delta function, de, which is
defined as

deðF Þ ¼
dH e

dF
¼

1
2

1
e þ 1

e cos pF
e

� �� �
for jF j < e

0 jF jP e:

�
ð8Þ

The curvature of the interface is calculated by

j ¼ r �~n; ð9Þ

where the unit vector normal to the interface is computed
from the level set function, i.e.,

~n ¼ rF
jrF j : ð10Þ
2.3. Flow and boundary conditions

In the present study, only the bubble-train flow is con-
sidered. Thus, the flow is assumed axisymmetric, so a
two-dimensional (r � z) computational domain is
employed. The periodic boundary condition is applied
at the both ends and no-slip condition is applied at the
wall. Four different lengths of computational domain,
i.e., Lz/R = 2, 3, 4 and 8, are examined.

For the temperature field, a uniform wall heat flux is
assumed. A quasi-periodic boundary condition,

oT
oz

				
z¼0

¼ oT
oz

				
z¼Lz

ð11Þ

is applied on the both ends. Note that, strictly speaking,
this formulation is ill-posed, because all the boundary
conditions are of the Neumann type. The temperature field
computed with this formulation contains an unknown
temperature Tu in addition to the actual temperature Ta,
viz.,

T ðr; z; tÞ ¼ T aðr; z; tÞ þ T uðtÞ: ð12Þ

In order to obtain the actual temperature, the value of Tu

should be computed from the global energy balance. In
the present study, however, this procedure is omitted be-
cause the temperature is treated as a passive scalar and
only the temperature difference is of interest.
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2.4. Discretization procedure

The governing equations are solved under the above-
mentioned boundary conditions by using the SMAC
method (Amsden and Harlow, 1970). The second-order
accurate central difference scheme is used for the spatial
discretization. The pressure Poisson equation is solved by
using the successive over-relaxation (SOR) scheme. An
equally spaced staggered grid system is adopted. The grid
is uniform both in the longitudinal (z) and radial (r) direc-
tions. The grid size is fixed at Dr/R = Dz/R = 0.03125, and
this corresponds to 32 grid cells in the radial direction. It
has been numerically verified that this grid resolution is
sufficient (Ua-arayaporn, 2005).

Integration of the advection Eq. (5) is done by the CIP
scheme (Yabe et al., 1991), which is compact, bounded and
of nearly spectral accuracy (Yabe et al., 2001). The level-set
function, F, is designed as a distance function, which mea-
sures the distance from the bubble surface. However, this
nature is not simply conserved by Eq. (5). Maintaining F

as a distance function is essential for providing the correct
interface force and the fixed interface thickness. Thus, the
re-initialization procedure (Sussman et al., 1994) with mass
conservation constraint (Sussman and Fatemi, 1999) is
made at every computational time step. In addition, a glo-
bal mass correction procedure is applied in order to ensure
the mass conservation for entire computation time. Other
details of the CIP level-set method used here are similar
to those used in Himeno et al. (2005).

The CIP scheme is also used here for the advection term
of the energy Eq. (4) in order to capture a steep tempera-
ture gradient expected near the gas–liquid interface.

3. Results and discussion

We assume water and air at 25 �C (298 K) and 1 atm
(qL = 1.0 · 103 kg/m3, lL = 8.9 · 10�4 Pa s; qG = 1.2 kg/
m3, lG = 1.8 · 10�5 Pa s; r = 7.2 · 10�2 N/m) and the
radius R of the cylindrical tube is fixed at 10 lm. The con-
dition is similar to that in the experiment by Serizawa et al.
(2002). The simulation is performed for different values of
void fraction, a, and pressure gradient, �dP/dz. Each sim-
ulation is started with gas and liquid at rest. One bubble is
initially placed in the computational domain. The pressure
gradient is kept constant and the simulation is continued
until the flow becomes fully developed. Ten cases were sim-
ulated with �dP/dz = 8.5 · 101 � 3.0 · 103 MPa/m and
a = 0.2 � 0.6. The given and resultant major flow parame-
ters are summarized in Table 1. It should be stressed again
that, unlike the experiment by Serizawa et al. (2002), the
present simulation is run under a given void fraction and
pressure gradient (bold letters in Table 1), and the flow rate
that satisfies this condition is the solution. The resultant
flow parameters (plain letters in Table 1) are calculated
by using this solution, but not given ones.

Fig. 1 shows the computed superficial gas and liquid
velocities, jG and jL, which are defined as
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jG ¼
QG

A
; jL ¼

QL

A
; ð13Þ

where QG and QL are the volumetric flow rates of the
gas and liquid, respectively, and A is the cross-sectional
area of the pipe. In all computed cases, the superficial
velocities lie in the range of slug flow regime found by
the experiment of Serizawa et al. (2002). The resultant
superficial Reynolds numbers of the gas and liquid phases
are ReG = qGjG(2R)/lG = 0.34 � 13 and ReL = qLjL(2R)/
lL = 16 � 490, respectively. The capillary number is
Ca = lLjL/r = 0.0087 � 0.27.

3.1. Gas flow ratio

Fig. 2 shows the computed relation between the void
fraction a and the gas volumetric flow ratio b defined as

b ¼ QG

QG þ QL

¼ jG

jG þ jL

¼ a
U G

U TP

: ð14Þ
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Fig. 2. Relationship between volumetric gas flow ratio (b) and void
fraction (a).
Present results for a = 0.2 are obtained with different pres-
sure gradients and different sizes of computational box.
The relation between a and b computed is found in good
accordance with the Armand correlation (Armand and
Treschev, 1946) proposed for conventional tubes, which
reads:

a ¼ 0:833b: ð15Þ
The results are also compared with experimental data of
bubbly and slug flows in Serizawa et al. (2002), the theoret-
ical relationship for the homogeneous flow,

a ¼ b; ð16Þ
and the correlation proposed by Kawahara et al. (2002),

a ¼ 0:03b0:5

1� 0:97b0:5
: ð17Þ

The correlation of Eq. (17) is based on the experimental
data for a 100 lm ID tube at the superficial velocities com-
parable to the present conditions. The present results are in
fair accordance with the experimental data by Serizawa
et al. (2002), although most of their data seem to be distrib-
uted around the line of a = b rather than a = 0.833b. The
correlation by Kawahara et al. (2002) predicts much larger
values of b. This may be due to the difference in flow pat-
terns; the flows in Kawahara et al. (2002) experiment have
a gas core causing much higher slip velocity. The most re-
cent experiment by Kawahara et al. (2006) show that at the
same flow conditions either quasi-separated flow (corre-
sponding to Eq. (17)) or quasi-homogeneous flow (a ’ b)
appears depending on differences of mixing condition at
the inlet.

The small discrepancy between the present simulation
results and the experimental data by Serizawa et al.
(2002) can be explained as follows, at least for the case of
relatively high void fraction (0.4 < a < 0.6). As is noted
by Serizawa et al. (2002), a dry zone may have been devel-
oped under the gas slug in their experiment. Therefore, the
Fig. 3. Bubble shape in slug flow regime. (a) Probable shape in previous
experiments (dry wall) and (b) present simulation with a = 0.6, �dP/
dz = 430 MPa/m (wet wall).
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gas, liquid and two-phase velocities become all equal, as
schematically shown in Fig. 3(a). Hence, b/a = UG/
UTP = 1. In the present simulation, in contrast, the wall
is always wet as exemplified in Fig. 3(b). The possible rea-
son for this difference may be the lack of special treatment
for the three-phase (i.e., gas–liquid–solid) interface, of
which scale is smaller than the numerical resolution. Such
interface cannot be simply described by the macroscopic
equations. In the present simulation, the liquid film
between the bubble and wall (which is resolved by about
six radial grid cells) has always a lower velocity than the
gas velocity due to the no-slip wall, and this results in
UTP smaller than UG (i.e., b > a).

3.2. Frictional pressure loss

The frictional pressure loss is compared with the Lock-
hart–Martinelli model (Lockhart and Martinelli, 1949).
Namely, the two-phase pressure gradient, (�dP/dz)TP

(which in the present study is identical to the given pressure
gradient, �dP/dz) is evaluated through the two-phase mul-
tiplier, U2

L, and the Martinelli parameter, X, defined respec-
tively as

U2
L ¼
ð�dP=dzÞTP

ð�dP=dzÞLO

; ð18Þ

and

X 2 ¼ ð�dP=dzÞLO

ð�dP=dzÞGO

: ð19Þ

Here, (�dP/dz)LO and (�dP/dz)GO represent the pressure
gradients required to drive single-phase liquid and gas
flows at the same superficial velocities, respectively. For
macro-sized tube, the relation between U2

L and X is usually
given by the Chisholm (1967) correlation, which reads

U2
L ¼ 1þ C

X
þ 1

X 2
; ð20Þ

where C is the Chisholm parameter, of which value ranges
between 5 and 20; C = 5 corresponds to cases where both
phases are laminar, and C = 20 to cases where both phases
are turbulent. Mishima and Hibiki (1996) suggested a mod-
ified expression by correlating their experimental data of
air–water flow in mini-tubes of 1–4 mm in inner diameter.
The Chisholm parameter in Mishima–Hibiki model is
diameter-dependent and can be expressed as

C ¼ 21½1� expð�0:319dÞ�; ð21Þ

where the inner diameter, d, is given in millimeter. In the
present case of d = 0.02, Eq. (21) gives C = 0.13.

Fig. 4 shows the relationship between U2
L and X in the

present simulation. Four curves of Chisholm correlation
with C = 20, C = 12 (corresponding to cases of laminar
liquid flow and turbulent gas flow), C = 5, and C = 0.13
(from Eq. (21)) are also drawn. Most of the present data
with a = 2 are found between the curves of C = 5 and
C = 12 For higher void fraction (Cases H–J), U2

L is even
higher than the curve of C = 12. This trend is opposite to
that observed in many of the previous pressure drop mea-
surements in micro and mini (R � 100–1000 lm) conduit,
in which U2

L tends to be below the curve of C = 5. Similarly
to the argument made for Fig. 3, the discrepancy may also
be due to different flow patterns. Unfortunately, direct
comparison with experiment by Serizawa et al. (2002) can-
not be made because the pressure drop was not studied in
their experiment.

The pressure drop is also compared with homogeneous
flow models. Fig. 5 shows the friction factor, fTP, defined as

fTP ¼
4Rð�dP=dzÞTP

GU TP

; ð22Þ

(where G = qLjL + qGjG is the total mass flux), as functions
of Reynolds number,

ReH ¼
2RG
lH

: ð23Þ
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wise circulation); dashed line, W > 0 (anti-clockwise circulation); incre-
ment, 0.005. (a) �dP/dz = 85 MPa/m (Case A); (b) 850 MPa/m (Case E);
(c) 3000 MPa/m (Case G). Solid circles on the cylindrical axis and
corresponding keys denote the longitudinal positions in Fig. 8.
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Different models have been proposed for the effective vis-
cosity, lH. Here we examine the following four models.

• McAdams (1954):

1

lH

¼ x
lG

þ 1� x
lL

� �
; ð24Þ

• Dukker et al. (1964):

lH ¼ blG þ ð1� bÞlL; ð25Þ
• Beatie and Whalley (1982):

lH ¼ blG þ ð1� bÞð1þ 2:5bÞlL; ð26Þ
• Theoretical solution for dilute bubble suspension (see,

e.g., Wallis (1969)), denoted as DBS theory in Fig. 5:

lH ¼ ð1þ bÞlL: ð27Þ
The relationships using the effective viscosity correspond-
ing to the Chisholm correlation, i.e.,

lH ¼
jL

U TP

1þ C
X
þ 1

X 2

� �
lL; ð28Þ

are also shown for comparison. As shown in Fig. 5, all the
empirical models introduced above seem to more or less
overestimate the effective Reynolds number, viz., underes-
timate the effective viscosity. Although not shown here,
the viscosity models by Owens (1961), Cicchitti et al.
(1960) and Lin et al. (1991) were also examined. The results
with these models were essentially similar to that with
McAdams (1954). Surprisingly, the theoretical viscosity
for dilute bubble suspension, Eq. (27), well reproduces
the present results. Note that Eq. (27) corresponds to the
well-known Einstein viscosity for solid particle suspension,
lH = (1 + 2.5b)lL (Einstein, 1906), but for bubbles. In or-
der to explain this agreement, however, advanced theoret-
ical investigation needs to be made in the future, because
the bubble shape (not only spherical but also highly elon-
gated) and flow condition (b > 0.2) in the present cases
are totally different from those assumed in the derivation
of Eq. (27) (i.e., spherical bubble with b� 1).

3.3. Velocity field

Fig. 6 shows the mean gas phase velocity, UG, the mean
liquid velocity, UL, and the mean two-phase velocity, UTP,
computed under different pressure gradients at a = 0.2.
These velocities are defined, respectively, as

UG ¼
QG

aA
¼ jG

a
; UL ¼

QL

ð1� aÞA ¼
jL

1� a
; ð29Þ

and

UTP ¼
QG þ QL

A
¼ jG þ jL: ð30Þ

With the increase of pressure gradient, all three velocities
increase almost linearly. The ratio of UG to UTP is slightly
higher for a larger pressure gradient. The reason for this is
indicated by the change of bubble shapes as shown in
Fig. 7. With the increase of pressure gradient, the bubble
is elongated in the central region of pipe and less influenced
by the no-slip wall. Thus, the velocity ratio increases.

Also shown in Fig. 7 are the isolines of the dimensionless
stream function relative to the bubble velocity, W, defined
as

ur

UTP

¼ �R2

r
oW
oz
;

uz � U G

U TP

¼ R2

r
oW
or
: ð31Þ
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In Fig. 7a (Case A), an anti-clockwise circulation is found
inside the bubble. The circulation is strong in the region
close to the wall, where the gas–liquid interface is driven
backward due to the strong shear. Accompanied with this,
a clockwise circulation is also found in the rear part of the
bubble. A circulation can also be found in the liquid re-
gion, in accordance with the sketch of possible streamlines
given by Taylor (1961), and it results in continuous refresh-
ment of the liquid layer near the wall and enhances the
momentum transfer to the wall. Namely, the pressure drop
increases due to this circulation. A similar circulation pat-
tern has been shown experimentally (e.g., Thulasidas et al.,
1997) and numerically (e.g., Irandoust and Andersson,
1989). With the increase in pressure gradient, the bubble
becomes longer as shown in Fig. 7(b) (Case E) and
Fig. 7(c) (Case G). In the case of intermediate pressure gra-
dient (Case E), strong circulation is found also around the
head of the bubble. It is clockwise and corresponds to the
localized elongation of bubble.

Fig. 8 shows the radial distribution of the longitudinal
(uz) and radial (ur) velocities in the cases presented in
Fig. 7. Different longitudinal positions are defined:

• Rear end of bubble (RE),
• Rear part of bubble (RB),
• Central part of bubble (CB),
• Front part of bubble (FB),
• Front end of bubble (FE),
• Central part of liquid slug (CS).
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Fig. 8. Longitudinal (uz) and radial (ur) velocity profiles at different longitudin
indicated by keys.
The exact positions indicated by the keys, RE, RB,
etc., are shown in Fig. 7. In Case A, where the bubble is
nearly spherical, the profiles of uz and ur at FE are, respec-
tively, nearly the same and nearly opposite to those at RE.
This suggests that the velocity field in the liquid slug is
nearly symmetric around the bubble. Inside the bubble,
the velocity field is asymmetric as can be noticed from
the profiles at FB and RB. At CS, the profile nearly
coincides the laminar solution at the velocity of UTP. In
Case E, evolution of profiles inside the bubble is totally
different from that in Case A, whilst the profile at CS
remains nearly parabolic. The profile at CB is flattened
like that of a turbulent flow due to stronger and compli-
cated circulations, as observed in Fig. 7(b). Note that
ur/UTP is nearly the same for Cases A and E, but the abso-
lute radial velocity (ur) in Case E is about nine times
higher than that in Case A due to the difference of UTP.
Finally, in Case G, the relative variation of velocity inside
the bubble is suppressed as compared to the former two
cases.

In all the cases examined here, there are large variations
of longitudinal and radial velocities in the liquid slug,
which amount to 70% and 20% of UTP, respectively. The
velocity magnitude of circulating flow, uc, may roughly
be estimated as a product of a representative bubble radius,
Rb, and the velocity gradient, i.e.,

uc � Rb

ouz

or

				
				 � Rb

UTP

R
: ð32Þ
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Fig. 10. Contour of dimensionless temperature (Eq. (34)) at a = 0.2 in
R = 10 lm tube. (a) �dP/dz = 85 MPa/m (Case A); (b) 850 MPa/m (Case
E). Increment is 0.2.
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Hence,

uc

UTP

� Rb

R
: ð33Þ

Usually, Rb/R� 1 in a macro-sized tube. In a micro sized
tube, however, Rb is of comparable order to R. Thus, the
circulating flow can become significantly strong. The
momentum transfer due to the secondary flow is therefore
considered to play a significant role in the determination of
friction drag of bubble-train flow in a micro sized conduit.

In the discussion above, we mainly focused on the cases
of single bubble period, i.e., Lz/R = 4. In two-phase flows,
however, there may exist different flow patterns under a
given set of flow conditions. In fact, recent experiment by
Amador et al. (2004) shows that a nozzle of different diam-
eters used for gas inlet results in different bubble periods
under the same superficial velocities. Fig. 9 shows the bub-
ble shape and the relative streamlines for the case of a = 0.2
and �dP/dz = 850 MPa/m, but with different bubble peri-
ods (different computational box size), i.e., Lz/R = 2, 3 and
8. As the bubble period increases, the bubble is more elon-
gated and the circulation pattern is also modified. Accord-
ingly, the resultant flow parameters are slightly changed.
As shown in Table 1, however, the amount of change is
small.

3.4. Convective heat transfer

Fig. 10 shows the temperature contours at a = 0.2 under
different pressure gradients. Under the smaller pressure
gradient (Fig. 10(a)), where the bubble shape is kept nearly
spherical, the temperature contours inside the liquid slug
align nearly parallel to the wall. Effects of convection due
to the anti-clockwise circulation shown in Fig. 7(a) are
noticed around the front and rear ends of the bubble.
The situation is basically similar under the larger pressure
gradient (Fig. 10(b)), although the temperature in the
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Fig. 9. Bubble shape (bold line) and relative streamlines for different bubb
(clockwise circulation); dashed line, W > 0 (anti-clockwise circulation); increm
(Case F).
liquid slug is more homogenized due to the stronger circu-
lation. In both cases, the temperature in the bubble is closer
to the wall temperature and more homogeneous due to
about 20 times higher thermal diffusivity than that of the
liquid.

Fig. 11 shows the streamwise distribution of the wall
and bulk mean temperatures in the corresponding cases.
The temperature is made dimensionless by using the
domain-averaged wall and bulk mean temperatures, hTwi
and hTmi, as

hðr; z; tÞ ¼ T ðr; z; tÞ � hT wi
hT wi � hT mi

; ð34Þ

(where the bracket, h Æ i, denotes the average in the longitu-
dinal direction), and the dimensionless local bulk mean
temperature is defined as
0.5 1 1.5 2 2.5 3

z/R

4 5 6 7 8

z/R

le period (R = 10 lm, a = 0.2, �dP/dz = 850 MPa/m). Solid line, W < 0
ent, 0.005. (a) Lz/R = 2 (Case C); (b) Lz/R = 3 (Case D); (c) Lz/R = 8
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Hmðz; tÞ ¼
R R

0
qCpuzhrdrR R

0
qCpuzrdr

: ð35Þ

In both cases shown in Fig. 11, the wall temperature locally
peaks at the position where the tip of the bubble just
passes. This observation qualitatively agrees with the
experiment by Monde and Mitsutake (1995), who mea-
sured the wall temperature fluctuations at different stream-
wise positions in mini channels. Beneath the bubble, the
bulk mean temperature is close to the wall temperature.
The overall temperature change is milder in the case with
a higher pressure gradient (Fig. 11(b)). This is attributed
to more active renewal of thermal layer due to the stronger
circulation in the liquid slug, as discussed above.

In Fig. 11, the local Nusselt number (normalized by the
single-phase Nusselt number, NuLO = 48/11 ’ 4.36) is
shown. The local Nusselt number, Nu(z, t), is defined as

Nuðz; tÞ ¼ 2Rhðz; tÞ
kL

¼ 2Rðoh=orÞw
Hwðz; tÞ �Hmðz; tÞ

: ð36Þ

Because the wall heat flux is constant and the pipe wall is
always wet in the present simulation, Nu, is simply propor-
tional to the inverse of difference between the local wall and
bulk mean temperatures. In the region of liquid slug, Nu/
NuLO is close to unity. The slightly higher value than that
in Fig. 11(b) is, again, due to mixing enhancement by the
circulation. In the region where the bubble exists, Nu rises
up to 5–7 times NuLO due to the small difference between
Hw and Hm. Accordingly, the global Nusselt number,
NuTP, defined as

NuTP ¼
2Rðoh=orÞw
hHwi � hHmi

; ð37Þ

becomes also higher than NuLO; NuTP = 5.55 and 8.15 for
the cases of Fig. 11(a) and (b), respectively.

The larger Nusselt number does not simply mean that
the heat transfer performance is also better. For fair com-
parison, increase of pressure drop due to the introduction
of bubbles should be taken into account. Fig. 12 shows
the heat transfer enhancement at the expense of pumping
power, ðNuTP=NuLOÞ=U2

L. As found from the figure, the fac-
tor does not exceed unity in the cases presently examined.
Especially, the heat transfer performance is found worse
than the single phase flow in the cases of weak pressure gra-
dient (Case A), shorter bubble period (Case C), and high
void fraction (Case H).
4. Conclusions

A series of numerical simulation are performed of air–
water two-phase flows in a micro tube of 10 lm in radius.
The flow conditions are set similar to those of the experi-
ments by Serizawa et al. (2002).

The volumetric gas flow ratio computed in the present
simulation are in good agreement with the correlations
proposed for macro-sized flow. It is argued that the differ-
ence of wall condition above the bubble, i.e., whether the
wall is kept wet or dry, explains small discrepancy with
the experimental data. The frictional pressure drop is
found higher than that predicted by the Chisholm correla-
tion for laminar–laminar case. Investigation of flow pattern
and velocity profiles reveals that strong circulations due to
the presence of bubble play important role to enhance the
momentum exchange in the radial direction.
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The local Nusselt number is very large beneath the bub-
ble due to small difference between wall and bulk mean
temperatures. Heat transfer is also enhanced in the liquid
slug due to the circulating flow. The global Nusselt number
is higher than that in a single-phase flow. However, this
increase occurs at the expense of pumping power.

It is also found that the length of the computational
domain, i.e., the period of bubbles, considerably affects
the flow pattern. This suggests that one must carefully
design both numerical and experimental conditions in
order to quantitatively compare them. The solution to this
problem is left as a future work.
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